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This Is a talk about

A Multi-task learning.
A AGtomeltidetarske grounpimgasks.
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Supervised learning

A Given training data and label
I Learn parameters for future prediction.

A Givenmultiple tasks.
i Learn parametersndependently




Regularization based framework

Foreach task solve an optimization problem
Balance empirical risk and model complexity

min loss(w, X¢, Y:) + R(wy)

Wt

iIndependently




How to solve a group of related tasks?

A Example
I Recognizing similar animals.
I Recognizing similar handwritten digits.
A We can do better than learning independently.

iIndependently




Multi -task learning (MTL)

A Main idea
I Learn multiple taskmintly.
I Take the advantage otlatedness
A Benefits
I Improvegeneralizationperformance.
I Requirelesstraining data.
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Regularization based approach

Solve a joint optimization problefor all tasks
Balance betweelotal empirical riskandrelatedness

T
mﬂi/n Z loss(we, X¢, Y:) + R(W)
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Alternatives to regularization based MTL

A Share a common layer in Neural Network
I R.Caruanal99y.
I B. Bakker and Heskes2003.
A Share common priors
I Yu, et al., 2005.
I Lee, et al., 2007.
I E. Bonilla, et al. 2008
i Daume Ill, Hal. 20009.
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Multi -task feature learning (MTFL)

[ Argyrioy et al. 2008. ]
Taskrelatedness

I Parameters lie om common lowdimensional subspace.
I Or equivalently, models shaeecommon feature subspace.

matrix W subspace

Wy
Wy

structure X
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Structural constraint on Wow rank



subspace

Lowrank Regularization

Rank number of nonezero singular values( non-convex )
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Singular Value Decomposition
Convex relaxation

I Trace normL;-norm of singular valueq convex )
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Motivation

|
Existing work on muHtiask feature learning
I single regularization term
I All tasks are related.

T
mwi/n t_zl loss(wy, X;, Yy) + MW7,

matrix W

[ Argyrioy et al. 2008. |



Motivation

|
When models are imixture of subspaces

T
mﬂi/n t_zl loss(ws, X, Y:) + MW7,

I Suboptimal to force with oneegularizer
I EX: synthetic data (later in the talk)

matrix W




Motivation

When groups are given

T
Wmi% Zloss(wt,Xt,Y}) +M[WAZ. + M[Wa|?,
- =" Desiderata

Regularize each growgeparately,

earn \withawlhom to share
D | matrix
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Stepl: use indicator matrix

Reformulate with task group assignment matgx

tasks Q

groupslmgi$ ||W1||%’r’ — ||Q1W||?’r‘

QW

matrix Wy




Integer programming for Inferring
__with whom to share

Reformulate with matrix Q

I Integerconstraint I
i Hardgroup assignment 111111 5 ZOSS(’UJt;XtaY;f)
t=1
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Step 2: relax the constraint

A Approach 1:

convex relaxation I
i Continuousconstraint min E loss(wy, X, Yy)
t=1

I Convex bufractional w.Q
solutions

AMIVOIW L. + AV QW3

A Approach 2:

non-convex relaxation S.1 0<gqgyu <1
I Usesquare root of Q: I
non-convex butinteger Q1+ Q2=

solutions



Integer solutions guaranteed

Theorem 1. Let { Q7 } be either the solution or a local
optimum to the following optimization,

min r(Q) =) [IWVQ,l:

.t Y Q=TI with 0< g, <1
g

(9)

then either one of the following is true: i) {Q}} is
binary; i) there ewists another binary {Q,} such that

rQ") =1(Q).



T(Q) = ZI%'LH Trace [Qg_lW\/Qg\/QQTWT] (1)

g

where €2, is constrained to be positive definitive. Fur-
thermore, Trace[Q,] = 1. Let ¥, = WIQ'W, we
have

T(Q) = minz Trace [ ¥,Q,] (2)

Since @, is a diagonal matrix, we have immediately

T(Q) = min y: y: Vgt (3)
g t




Numerical Optimization

Optimize W and Qeratively
I Fix Q, update W
A For each group, we solve

min Z E(Dt;wt)—F’YHWQHi
t:qgt=1

A Use existing algorithm

cf: Argyriou, et alConvex multtask feature
learning. MLJ 2008.



Numerical Optimization

Optimize W and Qeratively
I Fix W, update Q
AUse gradient descent

min 3 IV WE
g

st > Qg=1with0< gy <1

g

ARemove constraints
i by reparameterization? is unconstrained

eyt
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Results: synthetic data

Setup
I We have 30 tasks with 3 groups (10 tasks per group).
I Each task is a regression problem.
I Tasks in the same groupe the same feature.




Group ID (g)

Grouping results of the tasks

A Specify the correct number of groups
A ldentify thecorrect grouping

Incorrect # Correct # Incorrect #
of groups of groups of groups
2 groups 3 groups 4 groups
1
1 2
3
2
4

5 10 15 20 25 30 5 1015 20 25 30 5 10 15 20 25 30
Task ID (1) Task ID (1) Task ID (t)



Also iImprovegeneralization

A Measureaverageroot-mean-square error
A Obtain best performance withorrect grouping

RMSE

No
1.2 5 sharing

1 -

Standard

8 MTFL Incorrect o
All related groups [ Our mode ]

0.6 1 Correct groups
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Results: USPS AN A

Setup
I 10-way classification on images of 10 handwritten digits

I 1000 training data
I Classifier: binary logistic regression

Error rate %‘ No \
10 - sharing Standard

Group based

0.5 MTFL on visual Our model
"~ All related L Automatically
similarity . :
0 - infer grouping
8.5




Results: MNIST  PAPETIEEHRCD

Setup
I 10-way classification on images of 10 handwritten digits

I 1000 training data
I Classifier: binary logistic regression

No
sharing

Error rate % Standard

Group based

rejate simyarity Automatically

155 - infer grouping
15 -
14.5 -

14 -



Results: recognizanimals

F e é:
.2 6 ',.\,.‘
I

Setup
I Data set: Animal with Attributes (images of 20 classes)

I 1000 training data; Features: SIFT
I Classifier: binary logistic regression

No
0
Error rate /o&arng

74 - Standard
MTEL Group based
73 - All related /| parameter Our mode
fitness Automatically
79 infer grouping
71 A

70




Grouping results on digits data

USPS10 digits MNIST:10 digits

é Group 1 R Group 1
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Group 2 Group 3
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Grouping results on animal data

Animal with Attributes data set 20 classes are used




